
Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Microcontrollers[304184]

1

 Dr. D. S. Mantri
 Professor

 Dept. Of Electronics and Telecommunication Engg,

 Sinhgad Institute of Technology, Lonavala

dsmantri.sit@sinhgad.edu

Cell. +91 9922431612

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 Books :

R3: Peatman, John B, “Design with PIC Microcontroller”, Pearson Education PTE,

R4: Data Sheet of PIC 18FXXXX series

Contents: Brief summary of Peripheral support, Timers and its Programing(mode 0 &1), Interrupt Structure of
PIC18FXXXX with SFR, PORTB change Interrupts, use of timers with interrupts, CCP modes: Capture, Compare and
PWM generation, DC Motor speed control with CCP, Block diagram of in-built ADC with Control registers, Sensor
interfacing using ADC: All programs in embedded C

UNIT–IV: PIC Peripheral Support

Unit Objectives : On completion the students will be able to :

1. Understand the basic concept of Timers used for de;;ay calculations

2. Get the ide about the software and hardware interrupts

3. Get view of timer programing with SFRs used

4. Explains the objective of CCP mode

5. Study of CCP mode of operation

6. Able to design DC motor speed control circuit

7. write embedded C programs to test the performance

8. Understand the support of Peripheral devices

Unit outcomes :

1. write programs of delay

2. Configure PIC in CCP modes

Outcome Mapping:

PEOs:11,2 POs:1,2,3,4,5, 12 COs: 2 PSOs:1

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala DSM

Peripharal Supports- SFRS

• The PIC 18FXXXX has the
following peripherals:
– Data ports:

• A (7-Bits)
• B, C and D (8-Bits)
• E (4- bits)

– Counter/Timer modules.
• Modules 0,2 (8-Bits)
• Modules 1,3 (16-Bits)

– CCP Modules.
– I2C/SPI serial port.
– USART port.
– ADC 10-bits 13 CH
– EEPROM 256 Bytes

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala DSM

• Timers

– A value is loaded in the register and
continue changing at every clock cycle –
time can be calculated

– Can count on rising or falling edge

– There are several timers: 8-bit, 16-bit

– Controlled by SFR

• Master Synchronous Serial Port (MSSP)

– Serial interface supporting RS232

• Addressable USART

– Another serial data communication

• A/D converter

• Parallel Slave Port (PSP)

• Capture, Compare and PWM (CCP
Module)

ToCON

MCU Support Devices-SFRS

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Peripherals: Timer Module

• The Timer0 module timer/counter which can work as

timer/ counter has the following features:

 - 8-bit or 16 bit timer/counter

 - 8-bit software programmable prescaler

 - Internal or external clock

 - select Interrupt on overflow from FFh to 00h

 - Edge select for external clock

• Timer1 is 16 bit timer/ counter and cannot be operated in

8 bit.

• Timer2 is an 8-bit timer with a prescaler. It can be used

as the

 PWM time-base for the PWM mode of the CCP

module(s).

• Timer3 is 16 bit timer/ counter and cannot be operated in

8 bit. It also works in CCP mode.

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Peripherals: MASTER SYNCHRONOUS SERIAL PORT(MSSP) MODULE

• The Master Synchronous Serial Port (MSSP) module is a serial interface

useful for communicating with other peripheral or microcontroller devices.

These peripheral devices may be serial EEPROMs, shift registers, display

drivers, A/D converters, etc. The MSSP module can operate in one of two

modes:

• Serial Peripheral Interface (SPI)

• Inter-Integrated Circuit (I2C)

Peripherals: Enhanced universal synchronous Asynchronous receiver transmitter

The EUSART can be configured in the following modes:

 • Asynchronous (full duplex) with:

 - Auto-wake-up on character reception

 - Auto-baud calibration

 - 12-bit Break character transmission

• Synchronous – Master (half duplex) with selectable clock polarity

• Synchronous – Slave (half duplex) with selectable clock polarity

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Peripherals: Parallel Slave Port

• In addition to its function as a general I/O port, PORTD can also operate as an 8-

bit wide Parallel Slave Port (PSP) or microprocessor port.

• PSP operation is controlled by the 4 upper bits of the TRISE Register.

• Setting control bit, PSPMODE (TRISE<4>), enables PSP operation as long as the

Enhanced CCP module is not operating in dual output or quad output PWM mode.

In Slave mode, the port is asynchronously readable and writable by the external

world.

• The PSP can directly interface to an 8-bit microprocessor data bus. The external

microprocessor can read or write the PORTD latch as an 8-bit latch.

Advanced Analog Features

• 10-bit, up to 13-Channel Analog-to-Digital Converter module (A/D) with: -

Conversion available during Sleep -Up to 8 channels available

• Analog Comparator module: -Programmable input multiplexing

• Comparator Voltage Reference module

• Programmable Low-Voltage Detection (LVD) module: -Supports interrupt-on-

Low-Voltage Detection

• Programmable Brown-out Reset (BOR)

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 IO port programming in PIC- SFRS

• PIC18 has many ports Depending on the family member and on the number of
pins on the chip

• Each port can be configured as input or output. Bidirectional port

• Each port has some other functions Such as timer , ADC, interrupts and serial
communication

• Some ports have 8 bits, while others may not

• Each port has three registers for its operation:

 TRIS register (Data Direction register):

 If the corresponding bit is 0 -- Output

 If the corresponding bit is 1 -- Input

• PORT register : (reads the levels on the pins of the device)

• LAT register (output latch):The Data Latch register is useful

• for read-modify-write operations on the value that the

• IO pins are driving

IMP :Upon reset all ports are configured as input --TRISx

 register has 0FFh

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• The compare mode can cause an event like simply turning on
the device when the contents of Timer matches with CCP
register.

• In Capture mode, an event at CCP pin will cause contents of
timer to be loaded in CCP register.

• Pulse width modulation feature allows to create pulses of
variable duty cycle.

• The main difference between Enhanced CCP module and
standard CCP is that it allows four pins for implementation of
H bridge or half H bridge for DC motor control. -1, 2 or 4 PWM
outputs

Peripherals: Compare-Compare-Pulse Width Modulation (CCP)

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

These timers can be used as

• Time delay

• Pulse wave generation

• Pulse width or frequency measurement

• Timer as an event counter

Timers and its Applications
• PIC18 has two to five timers: Depending on the family number

• All up-counters : 8-bit and 16-bit

– Timer0 : 8-bit or 16-bit timer

– Timer1&3 : 16-bit timers

– Timer2 &4 : 8-bit timer

– SFRs : T0CON-T2CON

• Up-counter
– Counter is incremented at every clock cycle
– When count reaches the maximum count, a flag is set
– Counter can be reset to zero or to the initial value

• Down-counter
– Counter is decremented at every clock cycle
– When count reaches zero, a flag is set
– Counter can be reset to the maximum or the initial value

• Free-running counter
– Counter runs continuously and only readable
– When it reaches the maximum count, a flag is set

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

TMR0: Timer0- 8 or 16 bit

– 8-bit or 16-bit timer : can be accessed as low and high byte

– Readable and writable

– can be configured as Timer and event counter

– Requires Two SFRS , T0CON and INTCON

Parameters in T0CON register

– Eight pre-scale values (Bit2-Bit0)

– Clock source (Bit5)

• Internal (instruction cycle) --- Timer

• External clock connected to pin RA4/T0CK1 -- Counter

– Rising edge or falling edge (Bit4)

– Generates an interrupt or sets a flag when it overflows

• TMR0IF, Flag must be cleared to start the timer again

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

T0CON Reg- Timer control Register-8 bit

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

T0CON

Timer0

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

TMR0IF flag bit– INTCON-Overflow check

 INTCON (Interrupt Control Register) has the TMR0IF Flag

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Characteristics and operations of 16-bit mode

1. 16-bit timer, 0000 to FFFFH.

2. After loading TMR0H and TMR0L, the timer
must be started.

3. Count up, till it reaches FFFFH, then it rolls
over to 0000 and activate TMR0IF bit.

4. Then TMR0H and TMR0L must be reloaded
with the original value and deactivate TMR0IF
bit.

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 Timer0- 16-bit Block Diagram

Load TIMER0H first and then TIMER0L since
TIMER0H will be kept in temporary reg. to avoid
the errors during counting if TIMER0ON flag is set
to High

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 Timer0- functional Block Diagram

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• Programmed in 16-bit mode only and does not support 8-bit mode

• It has 2 bytes named as TMR1L and RMR1H [It can count up 65.535 pulses in a
single cycle]

• Has four Prescale values [1:1,1:2,1:4,1:8]

• It has SFR as T1CON and TMR1IF

• The module incorporates its own low-power oscillator to provide an additional
clocking option.

• Used as a low-power clock source for the microcontroller in power-managed
operation.

• Interrupt

– Generates an interrupt or sets a flag when it overflows

• TMR1IF : Flag must be cleared to start the timer again

• Resetting Timer1 using CCP module

– CCP1 in the Compare mode

– Timer1 and CCP1compared at every cycle

– When a match is found, Timer1 is reset

Timer 1- 16 bit

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• 16-bit counter/timer : Four prescale values (Bit5-Bit4)

– Clock source (Bit1) : Internal (instruction cycle)

• External (pin RC0/T13CK1) on rising edge

Timer 1- 16 bit- SFRS

T1CON

PIR1

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

T1CON (Timer 1 Control) Register

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Timer1 Block Diagram

Timer TMR1 has a completely separate

prescaler which allows 1, 2, 4 or 8 divisions

of the clock input. The prescaler is not

directly readable or writable. However, the

prescaler counter is automatically cleared

upon write to the TMR1H or TMR1L

register.

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• Used to counts event outside the PIC

– Increments the TMR0H and TMR0L registers

• T0CS in T0CON reg. determines the clock
source,

– If T0CS = 1, the timer is used as a counter

– Counts up as pulses are fed from pin RA4 (T0CKI)

– What does T0CON=0110 1000 mean?

• If TMR1CS=1, the timer 1 counts up as clock
pulses are fed into pin RC0

Counter programming

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Timer and counter

Timer

 counter

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

– 8-bit period register (PR2)- Fixed value

– TMR2 and PR2 are readable and writable

– TMR2 increments from 00 to the value equal to PR2

– TMR2IF flag from PIR1 reg. is raised and TMR2 reset to 00

– The clock source for TMR2 is Fosc/4 for both prescaler and Postscaler options.

– There is no external clock source ,hence cant not used as counter

– Three prescale values (Bit1-Bit0) and 16 postscale values (Bit6-Bit3)

– Flag (TMR2IF) is set when TMR2 matches PR2: Can generate an interrupt

TMR2: Timer2- 8-bit

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

TMR2: Timer2- SFRS

(T2CON)

(PIR1)

TMR2IF: Timer2 Interrupt overflow flag Bit

 0-TMR2 value is not equal to PR2 register

 1- TMR2 value is equal to PR2 register

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• Timer2 operation : 8-bit number is loaded in PR2

• When TMR2 and PR2 match: Output pulse is generated and the timer is reset

• Output pulse goes through postscaler: Sets the flag TMR2IF

Timer2- Block Diagram

When using the TMR2 timer, :one should know:

 Upon power-on, the PR2 register contains the value FFh;

 Both prescaler and postscaler are cleared by writing to the TMR2 register;

 Both prescaler and postscaler are cleared by writing to the T2CON register; and

 On any reset, both prescaler and postscaler are cleared.

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

TMR3: Timer3- 16-bit
• Programmed in 16-bit mode only and does not support 8-bit mode

• It has 2 bytes named as TMR3L and RMR3H [It can count up 65.535 pulses in a single cycle]

• Has four Prescale values [1:1,1:2,1:4,1:8]

• It has SFR as T3CON and TMR3IF

• Generates an interrupt or sets a flag when it overflows

• TMR3IF : Flag must be cleared to start the timer again and goes high when TMR3H:TMR3L
overflow from FFFF to 0000h occurs. It is part of PIR2 reg.

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

TMR3: Timer3- 16-bit -SFRS

T3CON

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Comparison of Timers

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

To select mode:

 Timer mode is selected by the T0CS bit of the T0CON register, (T0CS: 0=timer, 1=counter);

 When used, the prescaler should be assigned to the timer/counter by clearing the PSA bit of

the T0CON register. The prescaler rate is set by using the PS2-PS0 bits of the same

register; and

 When using interrupt, the GIE and TMR0IE bits of the INTCON register should be set.

To measure time:

 Reset the TMR0 register or write some well-known value to it;

 Elapsed time (in microseconds when using quartz 4MHz) is measured by reading the TMR0

register; and

 The flag bit TMR0IF of the INTCON register is automatically set every time the TMR0

register overflows. If enabled, an interrupt occurs.

To count pulses:

 The polarity of pulses are to be counted is selected on the RA4 pin are selected by the

TOSE bit of the T0CON register (T0SE: 0=positive, 1=negative pulses); and

 Number of pulses may be read from the TMR0 register. The prescaler and interrupt are used

in the same manner as in timer mode.

Timer :mode , Time and Count selection

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Timer Delay Calculation

for XTAL = 10 MHz with No Prescaler

• General formula for delay calculation T = 4/(10MHz) = 0.4 usecond

• Divide the desired Time delay by 0.4 µs

• Perform 65536-n , N= required dealy/ 0.4µs

• Convert decimal value to Hex – yyxx

• Set TIMER0L=xx and TIMER0H =yy

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Programming timers 0 and 1

• Every timer needs a clock pulse to tick

• Clock source can be

– Internal 1/4th of the frequency of the crystal
oscillator on OSC1 and OSC2 pins (Fosc/4) is fed into
timer

– External: pulses are fed through one of the PIC18’s
pins Counter

• Timers are 16-bit wide

– Can be accessed as two separate reg. (TMRxL &
TMRxH)

– Each timer has TCON (timer Control) reg.

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

REGISTERS ASSOCIATED WITH TIMER0

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• The size of delay depend on

– The Crystal frequency

– The timer’s 16-bit register.

• The largest timer happens when
TMR0L=TMR0H=00

• Prescaler option is used to duplicate the delay
by dividing the clock by a factor of 2,4, 8,16,
32,64 ,128,256

– If T0CON=0000 0101, then T = 4*64/f

XTAL Osc ÷ 4 ÷ 64 TMRx

Prescaler and generating larger delay

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• The PIC18 can have up to four or more
timers/counters. Depending on the family
member

• Timers: Generate Time Delays (using Crystal)

• Counters: Event counter (using Pulse outside)

• Timers are accessed as two 8-bit registers,
TMRLx and TMRHx

• Can be used either 8-bit or 16-bit

• Each timer has its own Timer Control register

Summary

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala DSM 37

#include <P18FXXXX.h>

void T0Delay(void);

void main(void)

{

 TRISB=0x00;

 While(1)

 {

 PORTB= 0x00; // Load bit patterns

 T0Delay ();

 PORTB= 0xFF;

 T0Delay ();

 }

}

 void T0Delay ()

{

 T0CON=0x08; // 0000 1000 Timer0, 16 bit, no prescaler

 TMR0H=0x9E; // load Higher yte in TMR0H

 TMR0L= 0x58; // Load Lower byte to TMR0L

 T0CONbits.TMR0ON=1; // start the timer for upcount 9E58—FFFF, TMR0IF=1

 While(INTCONbits.TMR0IF==0); // Check for overflow

 T0CONbits.TMR0ON=0; //Turnoff timer

 INTCONbits.TMR0IF==0; // clear the Timre0 flag

}

Write a C18 program to toggle all bits of Port B continuously with delay of 10 ms using Timer 0 , 16 bit
and no presclar

• Assume that Crystal frequency = 10 MHz

• Internal time delay = 4/(10*106) = 0.4* µs

• N= 10ms/0.4 µs = 25000

• Count= 65536-25000= (40536)10

• Hex Value to be loaded =(9E 58)16

• Load TMR0H=9E h and TMR0L=58h

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Write a C18 program to generate frequency of 2500 Hz on PORTC.2
continuously using Timer 1 , 16 bit and no pre-scaler .

Solution : Calculation of TMR1H and TMR1L
values

1. Assume that Crystal frequency = 10 MHz

2. For 2500 Hz frequency, Total time T= 1/
2500 Hz= 400 µs i.e. Ton = Toff = 200 µs

3. Internal time delay = 4/(10*106) = 0.4 µs

4. N= 200/0.4 µs = 500

5. Count = 65536 – 550 = (65036)10

6. Hex value to be loaded = (FE 0C)16

7. Load TMR1H = FF H and TMR1L = 06 H

#include <P18FXXXX.h>

void T1Delay(void);

#define mybit PORTCbits.RC2

void main (void)

{

 TRISCbits.TRISC2=0;

 while(1)

 {

 mybit^=1;

 T1Delay ();

 }

 }

void T1Delay ()

{

 T1CON=0x00; // Timer1, 16 bit, no pre-scaler

 TMR1H=0xFE; // load Higher byte in TMR1H

 TMR1L= 0x06; // Load Lower byte to TMR1L

 T1CONbits.TMR1ON=1; // Start the timer for up count

 while(PIR1bits.TMR1IF==0);// Check for overflow

 T1CONbits.TMR1ON=0; // Turn off timer

 PIR1bits.TMR1IF==0; // Clear the Timer1 flag

}

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Find the largest time delay that can be generated using Timer2, Using pre-scaler and post-scaler

#include <P18F4550.h>

#define mybit PORTCbits.RC2

void T1Delay(void);

void main (void)

{

 TRISCbits.TRISC2=0;

 T2CON=0X7B; // Timer2, pre-scale=post=16

 TMR2=0X00;

 while(1)

 {

 PR2=255; // Load PR2 for highest value

 T2CONbits.TMR2ON=1; // Start the timer

 while(PIR1bits.TMR2IF==0); // Check for Timer2 flag

 mybit=~mybit; // Toggle the bits

 T2CONbits.TMR2ON=0; // Turn off timer

 PIR1bits.TMR2IF==0; // Clear the Time1 flag

 }

 }

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Types of Interrupts

PIC18 has two vectors: High and Low

An interrupt VS Polling

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Sr. Interrupts Polling

01 Peripheral Request Microcontroller
service

Microcontroller continuously Monitors
the status of device

02 Efficient – ISR Not efficient

03 Uses Priority Method to serve the
request

Uses Round Robine Method to serve
the devices

04 Microcontroller can ignore the
request

 It does not happen in Polling

05 Requires Less time in execution It wastes the time of Microcontroller

06 Timer interrupts are used to stop
the execution

Checks for statistical conditions

Interrupt vs Polling Methods

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 PIC18 Interrupt sources
• Timer interrupts , TMR0IF, TMRIF--- etc. Timer Rollover Events-

Software

• 3 or 4 External Interrupts (INT0-INT3): Hardware

– Three pins of PORTB :RB0/INT0, RB1/INT1,and RB2/INT2 Can be used

to connect external interrupting sources : Keypads or switches

– Edge Triggered

– Rising or Falling edge selected in INTCON2 register

• PORTB Interrupt on Change (RB4-RB7): External hardware

 PORTB Interrupt (RBI): Change in logic levels of pins RB4-RB7

• Comparator Output Change

• A/D Conversion Complete

• Communication Channel Events– Receiver and Transmitter -
Serial I/O

• CCP and Other Peripheral Events…

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 Interrupt Sources- A Glimpse

RESET 000000

High Priority Interrupt 000008-000017H , GOTO instruction for ISR

Low Priority Interrupt 000018

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

MPU Response to Interrupts

• When interrupts are enabled

– MPU checks interrupt request flag at the end of each instruction

• If interrupt request is present, the MPU

– Resets the interrupt flag

– Saves the return address on the stack

• MPU redirected to appropriate memory location

– Interrupt vectors

• Interrupt service routine (ISR) meets request

• MPU returns to where it was interrupted

– Specific return instruction

RESET 000000

High Priority Interrupt 000008

Low Priority Interuupt 000018

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala
45

Steps in executing an Interrupts

Steps In Execution of Interrupt

1. It finishes the instruction it is executing and

saves the address of next instruction on the

stack.

2. It jumps to a fixed location in the memory

called as interrupt vector table and IVT diverts

the Microcontroller to ISR.

3. It Executes the ISR until it reaches to last

instruction of the subroutine which is RETFIE

Upon executing RETFIE instruction,

Microcontroller returns to the place from where

it was interrupted.

4. First it gets the PC address from the stack by

popping the top bytes of the stack into the PC.

Then it starts to execute from that address.

PIC Response to an Interrupt

Vector Locations

RESET : 000000

High Priority Interrupt : 000008-000017H. ,

Low Priority Interuupt : 000018

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Interrupt Service Routine (ISR)

• Similar to a subroutine

• Attends to the request of an interrupting source

– Clears the interrupt flag

– Should save register contents that may be affected by the code in the ISR

– Must be terminated with the instruction RETFIE

• When an interrupt occurs, the MPU:

– Completes the instruction being executed

– Disables global interrupt enable

– Places the return address on the stack

• High-priority interrupts (0x00008) :The contents of W, STATUS, and BSR registers are

automatically saved into respective shadow registers.

• Low-priority interrupts(0x00018): These registers must be saved as a part of the ISR, If they

are affected

• RETFIE [s] ;Return from interrupt

• RETFIE FAST ;FAST equivalent to s = 1

– If s =1: MPU also retrieves the contents of W, BSR, and

 STATUS registers

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

PIC18 Interrupt Sources - SFRS

• Special Function Registers (SFRs)

– RCON
• Priority Enable

– INTCON
• External interrupt sources

– IPR, PIE, and PIR
• Internal peripheral interrupts

• Valid interrupt

– Interrupt request bit (flag)(IF)

– Interrupt enable bit (IE)

– Priority bit (IP)

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

General Interrupt Structure

RESET 000000

High Priority Interrupt 000008-000017H , GOTO instruction for ISR

Low Priority Interuupt 000018

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Interrupt Priority -Enable

• Interrupt priorities

– High-priority interrupt vector 000008H

– Low-priority interrupt vector 000018H

– A high-priority interrupt can interrupt a low-priority
interrupt in progress.

– Interrupt priority enable
• Bit7 (IPEN) in RCON register

 RCON

IPEN: Interrupt Priority Enable

1 = Enable priority levels on interrupts

0 = Disable priority levels on interrupt

Reset Bits

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

External Interrupts- INT0,INT1,INT2

INTCON Register

INTCON2 Register

INTCON3 Register

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Internal Interrupt Registers-Timers, ADC & Serial I/O

IPR1

PIE1

PIR1

 IPR2

Interrupt Sources

1. Timers

2. ADC

3. Serial I/O

Interrupt Registers

1. Interrupt Priority Register(IPR1)

2. Peripheral Interrupt Register (PIR1)

3. Peripheral Interrupt Enable (PIE1)

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Valid interrupt

Interrupt request bit (flag)(IF)

Interrupt enable bit (IE)

Priority bit (IP)

Interrupt registers

RCON: Priority Enable

INTCON: External interrupt sources

IPR, PIE, and PIR: Internal peripheral interrupts

1. It is used for wake-up to CPU . Or

serve the high priority interrupts

2. It uses the both internal and peripheral

interrupts to wake-up CPU .

3. INTCON register is used to enable and

disable the Core (TMR0IF,INT0IF --)

and Peripheral interrupts

4. CPU will get weak-up call with Core

and Peripheral Interrupts when GIE bit

of INTCON is high

5. When PEIE and GIE bit of INTCON is

high , Peripheral Interrupts cause the

CPU to wake-up

Vector Locations

RESET : 000000

High Priority Interrupt : 000008-000017H. ,

Low Priority Interrupt : 000018

INTCON:

PIR1

IPR1

Interrupt structure (Legacy Mode)internal

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Interrupt structure (Priority Mode)External

Valid interrupt

Interrupt request bit (flag)(IF)

Interrupt enable bit (IE)

Priority bit (IP)

Interrupt registers

RCON: Priority Enable

INTCON: External interrupt sources

IPR, PIE, and PIR: Internal peripheral interrupts

1. It is used on the basis of priority for

wake up to CPU .

2. Each interrupt has three registers , IF,

IP, and IE to check for Valid interrupt,

decide priority and enable .

3. INTCON register is used to enable and

disable the High and Low priority

interrupts

4. CPU will get weak-up call on either

low or High priority interrupt is enable

5. When PEIE/GIEL bit of INTCON is

high , Low priority interrupts are

enable (actually No priority)

6. When GIEH bit of INTCON is high ,

High priority interrupts are enable (

IPR1 register is in active mode)

Vector Locations

RESET : 000000

High Priority Interrupt : 000008-000017H. ,

Low Priority Interrupt : 000018

INTCON:

PIR1

IPR1

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala DSM 54

1. Operates on the internal operations as reset (MCLR), data (RB7) and clock

(RB6) signals. MCLR is used for device reset and RB6 for serial clock, RB7

for serial data.

2. Even when the dedicated port is enabled, the ICSP functions remain available

through the legacy port. When VIHH is seen on the MCLR/VPP/RE3 pin, the

state of the ICRST/ICVPP pin is ignored.

3. The ICPRT Configuration bit can only be programmed through the default

ICSP port (MCLR/RB6/RB7).

4. The power-managed Sleep mode in the PIC18F2455/2550/4455/4550 devices

is identical to the legacy Sleep mode offered in all other PIC devices.

Interrupt structure (Legacy Mode)

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 How to create an ISR-Programming Support

When there are multiple requests, The interrupt source must be identified by checking the interrupt

flags Programmer responsibility: 1. Provide code for interrupt vector,2.Provide Interrupt Service

Routine (ISR)

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 How to create an ISR

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 How to create an ISR

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 How to create an ISR

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 How to create an ISR

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala
60

Programming Timer interrupt

Sr. No Interrupt Flag Bit Register Enable bit Register

1 Timer0 TMR0IF INTCON TMR0IE INTCON

2 Timer1 TMR1IF PIR1 TMR1IE PIE1

3 Timer2 TMR2IF PIR1 TMR2IE PIE1

4 Timer3 TMR3IF PIR3 TMR3IE PIE2

PIR2

D7 D6 D5 D4 D3 D2 D1 D0

PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF

D7 D6 D5 D4 D3 D2 D1 D0

GIE/GIEH PEIE/GIEL TMROIE INT0IE TMR0IF INTCON

D7 D6 D5 D4 D3 D2 D1 D0

OSCIF CIF --- EEIF BCLIF HLVDIF TMR3IF CCP2IF

PIR1

Timer Interrupt Flag bits and registers

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

#pragma code high_vector=0x0008;

Void My_Hivect_Int(void)

{

 _asm

GOTO my_isr

_endasm

}

 #pragma code

61

#pragma interrupt my_isr

Void my_isr (void)

{

Places RETFIE here automatically

}

#include<P18F4550.h>

#define myPB1bit PORTBbits.RB1

#define myPB7bit PORTBbits.RB7

Void T0_ISR (Void);

Void T1_ISR (Void);

#pragma interrupt chk_isr

Void chk_isr (void);

{

If (INTCONbits.TMR0IF == 1;

T0_ISR ();

If (INTCONbits.TMR1IF == 1;

T1_ISR ();

}

#pragma code My_HiPrio_Int=0x0008;

Void My_HiPrio_Int(void)

{

 _asm

GOTO chk_isr

_endasm

}

 #pragma code

Programming Timer interrupt

Void main (void)

{

 TRISBbits.TRISRB1=0;

 TRISBbits.TRISRB7=0;

 TRISD=0

 TRISC=255;

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

void main(void)

{

 TRISB = 0x00;

 LATB = 0xFF;

 RCONbits.IPEN = 1;

 INTCONbits.GIEH = 1;

 INTCONbits.GIEL = 1;

 INTCONbits.TMR0IE = 1;

 INTCONbits.TMR0IF = 0;

 INTCON2bits.TMR0IP = 0;

 T0CON = 0x07;// Stop the timer, Run in 16-bit mode, 1:256 prescaler

 TMR0H = 0xED;

 TMR0L = 0xB0;

 T0CONbits.TMR0ON = 1; // Start the timer

 while(1);

 }

Timer Interrupt Program

void interrupt low_priority timerinterrupt(void)

{

 if (TMR0IF == 1)//If timer0 interrupt flag is set.....

 {

 T0CONbits.TMR0ON = 0; // Stop the timer

 INTCONbits.TMR0IF = 0;

 TMR0H = 0xED;

 TMR0L = 0xB0;

 LATB =~LATB;

 T0CONbits.TMR0ON = 1; // Start the timer

 }

}

/*CALCULATIONS of Delay

 * required time = 100ms

 * TMR value=0xFFFF-[(required time)/(4*Tosc*Prescaler)]

 * =0xFFFF-[(0.1*48000000)/(4*256)]

 * =0xFFFF-0x124F

 * TMR =0xEDB0

 * TMRH = 0xED

 * TMRL = 0xB0

 */

or

No of MC = Required time/(4*Tosc*Prescaler)

Write program to generate the delay of 100 ms using Timer Interrupt Program

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Capture, Compare, and PWM (CCP) Modules

• CCP modules : Registers specially designed to perform the following
functions (in conjunction with timers as resources)

• Capture: The CCP pin can be set as an input to record the arrival time of a
pulse. In this CCP module may use either Timer1 or Timer3 to operate

• Compare: The CCP pin is set as an output, and at a given count, it can be
driven low, high, or toggled.

• Pulse width modulation (PWM): The CCP pin is set as an output and the duty
cycle of a pulse can be varied. In PWM mode, either Timer2 or Timer4 may
be used.

 • Pulse Width Modulation
 Duty cycle
 Percentage ratio of on time of a pulse to its period
 Changing of the duty cycle is defined as PWM
 CCP pin is set as an output
 Count for period and duty cycle loaded into CCP registers
 Varying the duty cycle generates PWM

The operation of a CCP module is controlled by the CCPxCON register.

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

CCP Modules

• Capture, Compare, and Pulse Width Modulation (PWM) module is associated
with a control register (CCPxCON) and a data register (CCPRx).

• The data register in turn consists of two 8-bit register: CCPRxL and CCPRxH.

• The CCP modules utilize Timers 1, 2, 3, or 4, depending on the module selected.

• CCPR1H (high) and CCPR1L (low)

– 16-bit Capture register 16-bit Compare register

– Duty-cycle PWM register

• Timer1 used as clock for Capture and Compare

• Timer2 used as clock for PWM

• The assignment of a particular timer to a module is determined by the bit 6 and
bit 3 of the T3CON register

• CCP1

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

CCPxCON register

DCxB1:DCxB0: PWM duty cycle bit 1 and bit 0 for CCP module x
 capture mode:

 unused

 compare mode:
 unused
 PWM mode:
 These two bits are the lsbs (bit 1 and bit 0) of the 10-bit PWM duty cycle.
CCPxM3:CCPxM0: CCP module x mode select bits
 0000 = capture/compare/PWM disabled (resets CCPx module)
 0001 = reserved
 0010 = compare mode, toggle output on match (CCPxIF bit is set)
 0100 = capture mode, every falling edge
 0101 = capture mode, every rising edge
 0110 = capture mode, every 4th rising edge
 0111 = capture mode, every 16th rising edge
 1000 = compare mode, initialize CCP pin low, on compare match force CCP pin high (CCPxIF bit is set)
 1001 = compare mode, initialize CCP pin high, on compare match force CCP pin low (CCPxIF bit is set)
 1010 = compare mode, generate software interrupt on compare match (CCP pin
 unaffected, CCPxIF bit is set).
 1011 = compare mode, trigger special event (CCPxIF bit is set)
 For CCP1 and CCP2: Timer1 or Timer3 is reset on event
 For all other modules: CCPx pin is unaffected and is configured as an I/O port.
 11xx = PWM mode

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

IPR1

(T2CON)

(T3CON)

Timer SFRS

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

CCP and Timer inter connected

 7 6 5 4 3 2 1 0

Timer3: RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

CCP in the Capture Mode

• CCPR1 captures the 16-bit value of Timer1 : When an event occurs on pin
RC2/CCP1

• Interrupt request flag bit CCP1IF is set: Must be cleared for the next operation

• To capture an event

– Set up pin RC2/CCP1 of PORTC as the input

– Initialize Timer1: T1CON register

– Initialize CCP1: CCP1CON register

• The PIC18 event can be one of the following:

 1. every falling edge

 2. every rising edge

 3. every 4th rising edge

 4. every 16th rising edge

• New Capture before Completion

 Lost Previous data

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Capture operation and applications

 When a capture is made, the interrupt flag bit, CCPxIF is set. [PIR1 register]
 The CCPxIF flag must be cleared by software.
 In capture mode, the CCPx pin must be configured for input.
 The timer to be used with the capture mode must be running in timer mode or

synchronous counter mode.
 To prevent false interrupt, the user must disable the CCP module when switching

prescaler.
Applications of Capture Mode
• Event arrival time recording
• Period measurement
• Pulse width measurement
• Interrupt generation
• Event counting
• Time reference
• Duty cycle measurement

PIR1

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

CCP in compare mode [T1CON, PIR1]

- The 16-bit CCPRx register is compared against the TMR1 (or TMR3).

- When they match, one of the following actions associate may occur on the CCPx pin:

Pin RC2/CCP1 on PORTC

1. Driven high 2. Driven low or 3. toggle output 4. remains unchanged[Interrupt

flag bit CCP1IF is set]

How to Use the Compare Mode? To set up CCP1 in Compare mode
1. Set up pin RC2/CCP1 of PORTC as output
2. Initialize Timer1 or 3 and CCP1

 3. Stores the sum in the CCPRxH:CCPRxL register pair: Clear the flag CCP1IF

Special Event Trigger

- The CCP1 and CCP2 modules can also generate this event to reset TMR1 or TMR3

depending on which timer is the base timer.

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Compare mode programming

• Initialize CCP1CON

• Initialize T3CON for timer 1(or 3)

• Initialize the CCPR1H:CCPR1L registers

• Make CCp1 pin as output

• Initialize Timer1(or3) register values

• Start Timer1(or3)

• Monitor CCP1IF flag(or use as interrupt).

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

PWM Mode

• CCP module with Timer2

– Output a pulse wave form for a given frequency/duty cycle

• Duty cycle

– CCPR1 register

• Period

– PR2 register

• When TMR2 is equal to PR2
– TMR2 is cleared

– Pin RC2/CCP1 of PORTC is set high

– PWM duty-cycle byte loaded into CCPR1

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• Timer2 operation : 8-bit number is loaded in PR2

• When TMR2 and PR2 match: Output pulse is generated and the timer is reset

• Output pulse goes through postscaler: Sets the flag TMR2IF

Timer2- Block Diagram

When using the TMR2 timer, :one should know:

 Upon power-on, the PR2 register contains the value FFh;

 Both prescaler and postscaler are cleared by writing to the TMR2 register;

 Both prescaler and postscaler are cleared by writing to the T2CON register; and

 On any reset, both prescaler and postscaler are cleared.

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

– 8-bit period register (PR2)- Fixed value

– TMR2 and PR2 are readable and writable

– TMR2 increments from 00 to the value equal to PR2

– TMR2IF flag from PIR1 reg. is raised and TMR2 reset to 00

– The clock source for TMR2 is Fosc/4 for both prescaler and Postscaler options.

– There is no external clock source ,hence cant not used as counter

– Three prescale values (Bit1-Bit0) and 16 postscale values (Bit6-Bit3)

– Flag (TMR2IF) is set when TMR2 matches PR2: Can generate an interrupt

TMR2: Timer2- 8-bit

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

PWM Mode

• PWM is the Feature of CCP and allows to create pulses of variable widths

• It is based on the Duty cycle of Wave with fixed duration of period

• Uses Timer2 and Period register PR2 –fixed value.

• Pin RC2/CCP1 of PORTC is set high to obtain the PWM wave

• Uses 8-bit CCPR1L register

• SFRs used CCPxCON, T2CON, PIR1 and TMR2 is cleared CCPRxL

• Used to control Speed of DC motor

25%

50%

75%

100% T1 T2 T3 T4

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

PWM MODES (CCP2)

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Step 1 :Calculating the Period Value
Period value : Tpwm = (PR2 + 1) *4*Tosc*N

 PR2 = [Tpwm / *4*Tosc*N]- 1
Where Tpwm = Desired PWM Signal Period = 1 / fpwm

 PR2 = TMR2’s Period Register

 Tosc = System Oscillator Period = 1 / fosc

 N = TMR2 Pre-scale Value (1, 4, or 16)

Choose Pre scaler [TMR2PRE] to ensure that PR2 is in the range of 0 to 255 for the

desired PWM frequency

PWM Configuration:

Step 2 :Calculating the CCPRL1 Value (Lower 8 bits)
Value to be loaded = % D * PR2

Step 3 : Calculating the Duty Cycle Value
DCPWM= (CCPRxL:CCPxCON<5:4>) *Tocs*N
where DCpwm =%DC*Twpm = Desired PWM Duty Cycle (time, not %)

 CCPR2L = Upper 8-bits of Duty Cycle Value

 CCP2CON<5:4> = Low 2-bits of Duty Cycle Value

(CCPRxL:CCPxCON<5:4>) =DCpwm/(Tosc*N) ;

CCPR2L:CCP2CON<5:4> is in the range of 0 to 1023 for the desired PWM duty cycle.

Minimum fpwm--- PR2-255, N=16

 =fosc/16382

Maximum fpwm--- PR2-1, N=1

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

CCP in PWM mode [T2CON, PIR1]

PWM period = [(PRy) + 1] * 4 * TOSC * N

N = Presale factor 1,4,16

PWM duty cycle =

(CCPRxL:CCPxCON<5:4>) * TOSC * N

Procedure for using the PWM module:

Step 1

Set the PWM period by writing to the PRy (y =

2 or 4) register.

Step 2

Set the PWM duty cycle by writing to the

CCPRxL register and CCPxCON<5:4> bits.

Step 3

Configure the CCPx pin for output

Step 4

Set the TMRy prescale value and enable

Timery by writing to TyCON register

Step 5

Configure CCPx module for PWM operation

CCPxCON<5:4> for Duty cycle bits

0 0 0

0 1 0.25 :

1 0 0.50 :

2 1 1 0.75:

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Calculation of PR2 & Prescalers
Find the PR2 and pre-scalers needed to get the following PWM frequencies

a) 1.22KHz, b) 4.88KHz and c) 78.125 if fosc=20 MHz

Ans: PR2= [fosc/fpwm*4*N]-1

 a) for fpwm = 1.22 KHz if N=1, PR2=4097

 N=4, PR2=1024

 N=16, PR2=255 ---- Valid

Find Minimum and Maximum value of fpwm

Minimum fpwm--- PR2-255, N=16 fpwm =fosc/16382

Maximum fpwm--- PR2-1, N=1

Calculation of CCPR1L

Find value of CCPR1l and DC1B1: B0 for fpwm=2.5 KHz and 50% duty cycle PWM

[0 0-- 0 %, 0 1--25 %, 1 0 -- 50%, 1 1-- 75 %, 11xx- PWM]
Ans : Assume that fosc=10MHz, and N=16

1. PR2= [fosc/fpwm*4*N]-1= 62

2. CCPR1L= PR2*DC = 62*.5=31

3. DC1B1: DC1B0 =10

Calculation of PR2, Pre-scaler, CCPR1L, DC1B1:B0

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• Set PWM Period by writing to PR2 register

• Set PWM Duty Cycle by writing to CCPRxL and CCPxCON<5:4> bits

• Make the CCPx pin an output by clearing the appropriate TRIS bit

• Set the TMR2 prescale value, then enable TMR2 by writing to T2CON

• Clear the TMR2 register

• Configure the CCPx module for PWM mode set DC1B2 and DC1B1 for

decimal portion of the duty cycle.

• Start Timer2.

Configuring CCPx for PWM-programming

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Step1: Load PR2 Value

 PR2= [fosc/fpwm*4*N]-1=[10MHz/2.5KHz*4*4]-1 =249;

Step2: Set PWM Duty Cycle by writing to CCPRxL and CCPxCON<5:4> bits

 CCPRxL= PR2*DC= 249*0.75= 186.75~186;

Step3: Make the CCPx pin an output by clearing the appropriate TRIS bit

 TRISCbits.TRISC2=0;

Step4: Set the TMR2 pre-scaler value, then enable TMR2 by writing to T2CON

 T2CON=0x01; (pre-scaler=4 00– 1:1, 01- 1:4; and 1X– 1:16) 00000001

Step5: Clear the TMR2 register

 TMR2=0;

Step6: Configure the CCPx module for PWM mode set DC1B2 and DC1B1 for

 decimal portion of the duty cycle.

 CCP1CON=0x3C; (CCPxCON<5:4> =11 for 75% DC & 11XX-- PWM)

Step7: Start Timer2.

 T2CONbits. TMR2ON=1;

Step8: Check for End of Period

 { PIR1bits.TMR2IF=0;

 while(PIR1bits.TMR2IF= =0); }

Configuring CCPx for PWM-programming
Write a program for 2.5 KHz and 75 % duty cycle PWM generation with N=4

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

#include <P18F458.h>

Void main(void)

{

1. CCP1CON=0 ; //clear the reg

2. PR2=155; // load the PR2 value

3. CCPR1L=15; // 10% DC

4. TRISCbits.TRISC2=0; // make PWM pin output

5. T2CON=0x02; // Timer2, 16 prescalar, no post scalar

6. CCP1CON=0x2C; // PWM mode 00 for DC1B1:DC1BO

7. TMR2=0; // Clear timer2

8. T2CONbits.TIMER2ON=1; // START TIMER2

9. Ckeck for the timer flag

 While(1)

{

 PIR1bits.TMR2IF=0; clear timer2 flag.

 While(PIR1bits.TMR2IF==0); wait for end of period

} }

Write a program for 1KHzand 10% duty cycle PWM generation

Solution, Assume that fosc=10MHz, and N=16

 1. PR2= [fosc/fpwm*4*N]-1= 155.25 2. CCPR1L= PR2*DC = 155.25*0.1=15.52

 3. DC1B1: DC1B0 =10 , CCP1CON =00101100, T2CON=00000010

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 DC Motor speed control with CCP

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Interfacing of DC motor– PWM generation.

SETUP FOR PWM OPERATION

The following steps should be taken

when configuring the CCP module

for PWM operation:

1. Set the PWM period by writing to

the PR2 register.

2. Set the PWM duty cycle by

writing to the CCPR1L register and

CCP1CON<5:4> bits.

3. Make the CCP1 pin an output by

clearing the TRISC<2> bit.

4. Set the TMR2 prescale value and

enable Timer2 by writing to T2CON.

5. Configure the CCP1 module for

PWM operation.

PWM period = [(PRy) + 1] * 4 * TOSC * N

N = Presale factor 2,4,16

PWM duty cycle = (CCPRxL:CCPxCON<5:4>) * TOSC * N

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

/*Calculations:

 Fosc = 20MHz

 PWM Period = [(PR2) + 1] * 4 * TMR2 Prescale Value / Fosc

 PWM Period = 200us

 TMR2 Prescale = 4

 Hence, PR2 = 249 or 0xF9

 Duty Cycle = 10% of 200us

 Duty Cycle = 20us

 Duty Cycle = (CCPR1L:CCP1CON<5:4>) * TMR2 Prescale Value /

Fosc

 CCP1CON<5:4> = <1:1>

 Hence, CCPR1L = 24 or 0x18

 */

#include<p18f4550.h>

unsigned char count=0;

bit TIMER,SPEED_UP;

void timer2Init(void)

{

 T2CON = 0b00000001; //Prescalar = 4; Timer2 OFF

 PR2 = 0xF9; //Period Register

}

void Interrupt_Init(void)

{

 INT1IE = 1; //Enable external interrupt INT1

 INTEDG1 = 0; //Interrupt on falling edge

 GIE = 1; // Enable global interrupt

}

void interrupt timerinterrupt(void)

{

 if (INT1IF) // If the external interrupt flag is 1, do

 {

 INT1IF = 0; // Reset the external interrupt flag

 if(SPEED_UP)

 {

 if(count < 8)

 {

 count++;

 CCPR1L = 0x18 + (count * 25); //Increment duty cycle

 }

 else SPEED_UP = 0;

 }

 else

Program of DC Motor

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

PWM application

as brightness control in lamp Light

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 Standard CCP Module:

 Input Capture

 Captures the timer value (16bit) when an event

 occurs on a CCP pin

 Output Compare

 Generate a signal on the CCP pin at a specified time

• PWM

 2 Pulse Width Modulated Outputs (10 bit accuracy)

 Enhanced CCP Module:

 Same as standard but with Enhanced 10-bit PWM

 Complementary outputs to drive half or full bridge

 Dead band control

 Only available on CCP1

CCP and ECCP Modules

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Speed control of DC motor

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Stepper motor Interface

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Speed control of DC motor

H- bridge speed control Low value register to control the speed NPN transistor speed control

In this application a fairly complex control

application is used which allows forward

and reverse, as well as speed control, of

a dc motor using the full H-bridge circuit.

The direction and speed of the motor are

specified by the potentiometer;

 Center position: No speed

 Upward movement: Forward

 Down movement: Reverse

Uses the PWM mode to control the Speed

Uses the Timer2 with increased frequency

either internal or external

PWM speed control

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Stepper motor position and speed control

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Sensor interfacing using ADC

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE – PIC 18F4550

• It has 10 bit ADC (Resolution – 10 bit)

• The ADC module has with 13 Channels or the PIC18F4550 devices. [RA0-3,5 RB0-4

RE0-3]=AN0-AN12=13 CH

• The converted binary output data is held in two registers ADRESL and ADRESH

• Vdd can be used as source for Vref or connecting to external device source

• The conversion Time is decided by Fosc--- can not be shorter than 1.6 ms (40 MHz)

• It allows the differentiation of Vref+ and Vref-

• All the features are programmed by ADCON0 , ADCON1 and ADCON2 register

• The A/D allows conversion of an analog input signal to a corresponding 10-bit digital

number. The A/D module has four registers.

 • A/D Result High Register (ADRESH)

 • A/D Result Low Register (ADRESL)

 • A/D Control Register 0 (ADCON0)

 • A/D Control Register 1 (ADCON1)

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

ADC Block Diagram

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

• The analog reference voltage is software selectable to either the device’s positive and negative

supply voltage (VDD and VSS), or the voltage level on the RA3/AN3/ VREF+ pin and

RA2/AN2/VREF- pin.

• The A/D converter has a unique feature of being able to operate while the device is in SLEEP

mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D’s internal

RC oscillator.

• The output of the sample and hold is the input into the converter, which generates the result via

successive approximation.

• A device RESET forces all registers to their RESET state. This forces the A/D module to be

turned off and any conversion is aborted.

• Each port pin associated with the A/D converter can be configured as an analog input (RA3 can

also be a voltage reference) or as a digital I/O.

• The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D

conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE

bit (ADCON0<2>) is cleared, and A/D interrupt flag bit, ADIF is set.

• Channels are selected by use of CHS3:CHS0 of DADCON0 register

ADC Block Diagram

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

ADC Registers

ADCON0

ADCON1

ADCON2

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

ADCON0 Register

• ADCON0 reg is used to set the conversion time and select the channels

• For power saving ADC feature is turned off when Power up. And turned on with ADON

bit when required.

• GO/DOWN bit is used for start and monitor the End of conversion

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

ADCON1 Register

ADCON1 is used to set the

reference voltage

PCFG select port configuration

RA0-3, RA5 & RE0-2

Calculation of A/D conversion time:

 It is 12 times the Tad: conversion

time / bit = Fosc/2, /4,/8,/16,/32,/64

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

After conversion data in the ADRESL

and ADRESH is right or left justified

by ADFM bit ADON bit when

required.

ADCON2 Register

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

A/D RESULT REGISTERS

• The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the

completion of the A/D conversion. This register pair is 16-bits wide.

• The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit

result register. The A/D Format Select bit (ADFM) controls this justification.

• The operation of the A/D result justification. The extra bits are loaded with ’0’s. When an

A/D result will not overwrite these locations (A/D disable), these registers may be used as

two general purpose 8-bit registers.

ADC Result register

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

1. Configure the A/D module:

 Turn on A/D module (ADCON0) -- [BSF ADCON0, ADON]

 Configure analog pins, voltage reference and digital I/O (ADCON1)

 Select A/D input channel (ADCON0)

 Select A/D conversion clock (ADCON0)

2. Configure A/D interrupt (if desired):

 Clear ADIF bit,

 Set ADIE bit,

 Set GIE bit,

 Set PEIE bit

3. Wait the required acquisition time.

4. Start conversion:

 Set GO/DONE bit (ADCON0)

 Wait for A/D conversion to complete, by either:

 Polling for the GO/DONE bit to be cleared (interrupts disabled) OR

 Waiting for the A/D interrupt

6. Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.

7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is

 defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

Programming Steps

1. Turn On ADC module

2. Initialize the port pins as input

3. Select voltage references and input channels ADCON0 &

ADCON1

4. Select the conversion Speed Tad

5. Wait for the required Acquisition time

6. Activate the start of conversion bit GO/DOWN

7. Wait for the conversion to complete by polling the end of

GO/DOWN bit

8. When GO/DOWN bit goes low read the ADRESL and

ADRESH reg for digital output

9. repeat the sequence from step 5

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

Draw an interfacing diagram of ADC with PIC and Write an ALP to get data from channel 0
and display result on Port B and D every 10msec

 #include <P18FXXXX.h>

void T0Delay(void);

void main(void)

{

 TRISB=0; // configure Port B as output

 TRISD=0;

 TRISAbits.TRISA0=1; //

 ADCCON0=0X81; //FOSC/64,CHO,ADC on

 ADCCON1=0XCE; //FOSC/64,AN0, right Justified

 While(1)

 {

 ADCON0bits.GO=1

 while (ADCON0bits.DOWN==1);

 PORTB=ADRESL;

 PORTD=ADRESH;

 T0Delay();

 }

 }

 void T0Delay ()

 {

 T0CON=0x08; // Timer0, 16 bit, no prescaler

 TMR0H=0x9E; // load Higher byte in TMR0H

 TMR0L= 0x58; // Load Lower byte to TMR0L

 T0CONbits.TMR0ON=1; // start the timer for upcount

 While(INTCONbits.TMR0IF==0); // Check for overflow

 T0CONbits.TMR0ON=0; //Turnoff timer

 INTCONbits.TMR0IF==0; // clear the Timre0 flag

 }

• Assume that Crystal frequency = 10 MHz

• Internal time delay T = 4/(10*106) = 0.4 µs

• N= 10ms/0.4 µs = 25000

• Count= 65536-25000= (40536)10

• Hex Value to be loaded =(9E 58)16

• Load TMR0H=9E h and TMR0L=58h

• T0CON=00001000 – int Clock- No Prescaler

ADCON0

ADCON1

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 Calibrated directly in ° Celsius (Centigrade)

 Linear + 10.0 mV/°C scale factor

 0.5°C accuracy guarantee able (at +25°C)

 Rated for full -55° to +150°C range

 Suitable for remote applications

 Low cost due to wafer-level trimming

 Operates from 4 to 30 volts

 Less than 60 µA current drain

 Low self-heating, 0.08°C in still air

 Nonlinearity only ±¼°C typical

Low impedance output, 0.1 Ohm for 1 mA load

Interfacing of Temperature Sensors

 #include <P18FXXXX.h>

 void T0Delay(void);

 void main(void)

 {

 unsigned char Lo-bytes, Hi-bytes, bin_temp

 TRISB=0;

 TRISD=0;

 TRISAbits.TRISA0=1;

 TRISAbits.TRISA3=1;

 ADCCON0=0X81;

 ADCCON1=0XC5;

 While(1)

 {

 T0Delay();

 ADCON0bits.GO=1

 while (ADC)N0bits.DOWN==1);

 Lo_byte=ADRESL;

 Hi-byte=ADRESH;

 Lo_byte>>=2

 Lo_byte &=0x3F;

 Hi_byte<<6

 Hi_byte &=0xC0;

 bin_temp=Lo-bytes/Hi-bytes

 }

 }

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

LM35 Temperature Sensor Interfacing with PIC18F

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

LM35 Temperature Sensor Interfacing with PIC18F

Interfacing Diagram

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

 #include <P18FXXXX.h>

 void T0Delay(void);

 void main(void)

 {

 unsigned char Lo-bytes, Hi-bytes, bin_temp

 TRISB=0;

 TRISD=0;

 TRISAbits.TRISA0=1;

 TRISAbits.TRISA2=1;

 ADCCON0=0X81;

 ADCCON1=0XC5;

 While(1)

 {

 T0Delay();

 ADCON0bits.GO=1

 while (ADC)N0bits.DOWN==1);

 Lo_byte=ADRESL;

 Hi-byte=ADRESH;

 Lo_byte>>=2

 Lo_byte &=0x3F;

 Hi_byte<<6

 Hi_byte &=0xC0;

 bin_temp=Lo-bytes/Hi-bytes

 }

 }

void T0Delay ()

 {

 T0CON=0x08; // Timer0, 16 bit, no prescaler

 TMR0H=0x9E; // load Higher byte in TMR0H

 TMR0L= 0x58; // Load Lower byte to TMR0L

 T0CONbits.TMR0ON=1;// start the timer for upcount

 While(INTCONbits.TMR0IF==0); // Check for overflow

 T0CONbits.TMR0ON=0; //Turnoff timer

 INTCONbits.TMR0IF==0; // clear the Timre0 flag

}

Interfacing of Temperature Sensors
• Assume that Crystal frequency = 10 MHz

• Internal time delay T = 4/(10*106) = 0.4 µs

• N= 10ms/0.4 µs = 25000

• Count= 65536-25000= (40536)10

• Hex Value to be loaded =(9E 58)16

• Load TMR0H=9E h and TMR0L=58h

• T0CON=00001000 – int Clock- No Prescaler

Dr. D. S. Mantri, Dept. f E&TC Engg., SIT Lonavala

